
SERIES WORKSHEET 2 SOLUTION SKETCHES

Note: These are not model solutions, but only sketches/hints towards solutions.

Problem 1. Find the radius of convergence and the interval of convergence (for (6) and (8) just the
radius suffices).
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Solution.

(1) R =
3
√
3, IOC = (− 3

√
3,

3
√
3). Do ratio or root test for R. At the endpoints the general term

doesn’t go to 0.

(2) R = 4, IOC = [−4, 4]. Do ratio or root test for R. At the endpoints get convergence by p-series
with p = 4 > 1.

(3) R = 1, IOC = [1, 3]. Do ratio or root test for R. At the endpoints get convergence by
comparison with p-series with p = 2 > 1.

(4) R =
1

2
, IOC = (−1

2
,
1

2
). Do ratio or root test for R. At the endpoints the general term doesn’t

go to 0.

(5) R = 1, IOC = [2, 4]. Do ratio or root test for R. At the endpoints get convergence by p-series
with p = 3 > 1.

(6) R = e. Do ratio test. (Extra problem: Use Stirling’s approximation lim
n→∞

√
2πnnne−n

n!
= 1 to

deduce behaviour at endpoints)

(7) R = 1, IOC = [−1, 1). Do ratio or root test for R. At the right endpoint we get the harmonic
series, at the left we get the alternating harmonic series (note that n is even iff n2 is).

(8) R = kk. Do ratio test.

Problem 2. Compute the values of the sums:

∞∑
n=2

(−1)n

n!
,(1)

∞∑
n=1

n

3n
,(2)

∞∑
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∞∑
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∞∑
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∞∑
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∞∑
n=0

(−1)n

(2n+ 1)3n
.(7)

Solution.

(1) e−1. Use the exponential series.

(2)
3

4
. Differentiate the geometric series.

(3) − ln(1− e−1). Use Taylor series for ln(1− x).

(4) 0. Use Taylor series for sinx.

(5)
√
2− 1. Use binomial series using the hint.

(6)
e+ e−1

2
− 1. Consider the Taylor series for ex + e−x. (This is a common trick to get rid of the

odd terms).

(7)
π

2
√
3
. Use the Taylor series for arctanx.

Problem 3. Express the given functions as power series centered at 0.

x2

x4 + 16
,(1)

1 + x

1− x
,(2) sin2(x),(3) (x+ 1)ex

2

.(4)

Solution.

(1)
x2

x4 + 16
=

x2

16

1

1−
(
−x4

16

) =
x2

16

∞∑
n=0

(
−x4

16

)n

=

∞∑
n=0

(−1)n

16n+1
x4n+2.

(2)
1 + x

1− x
= 1 +

2x

1− x
= 1 + 2x

∞∑
n=0

xn = 1 +

∞∑
n=1

2xn = 1 + 2x+ 2x2 + 2x3 + . . . .

(3) sin2(x) =
1

2
− 1

2
cos(2x) =

1

2
− 1

2

∞∑
n=0

(−1)n
x2n

(2n)!
= −1

2

∞∑
n=1

(−1)n
x2n

(2n)!
.

(4) (x + 1)ex
2

= (x + 1)

∞∑
n=0

(x2)n

n!
=

∞∑
n=0

x2n+1

n!
+

x2n

n!
=

∞∑
k=0

xk

(⌊k
2 ⌋)!

. (here ⌊x⌋ = largest integer

that is ≤ x, in particular ⌊2n+ 1

2
⌋ = n = ⌊2n

2
⌋)

Problem 4. Suppose f(x) =

∞∑
n=0

anx
n has radius of convergence 1 and

∞∑
n=0

an converges. Abel’s

theorem says that then lim
x→1−

f(x) =

∞∑
n=0

an. Use this to compute the following sums:

∞∑
n=1

(−1)n+1

n
,(1)

∞∑
n=1

(−1)n+1

2n− 1
.(2)
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Solution.

(1) ln 2. Use the series for f(x) = ln(1 + x).

(2)
π

4
. Use the series for f(x) = arctanx.

Problem 5. The Bernoulli numbers Bn are defined by the power series expansion

x

ex − 1
=

∞∑
n=0

Bn

n!
xn.

Compute Bn for n = 0, 1, 2, 3, 4, 5, 6. Show that
x

ex − 1
+

x

2
is even and hence deduce that Bn = 0

whenever n > 1 is odd.

Solution. Can compute the first terms in the quotient either by long division of power series or by

writing x = (ex − 1)
∞∑

n=0

Bn

n!
xn, then multiplying out the product on the right, comparing coefficients,

and finally solving recursively for the Bn. This gives:

n Bn

0 1

1 −1

2

2
1

6

3 0

4 − 1

30

5 0

6
1

42

If a function is even, then its MacLaurin series has only terms with even power (e.g. compare coefficients

in the equation f(x) = f(−x)). Some algebraic manipulations show that f(x) =
x

ex − 1
+

x

2
is even,

hence all its coefficients with an odd x-power are 0. But except for the x1 coefficient, they all coincide

with the coefficients of
x

ex − 1
.

Remark: On Homework 3 you showed

∞∑
n=1

1

n2
=

π2

6
. More generally, one can show

∞∑
n=1

1

n2k
=

(−1)n+1(2π)2nB2n

2(2n)!

for all integers k > 0.
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Problem 6. Recall that the Fibonacci numbers are defined recursively by F0 = 0, F1 = 1 and Fn+2 =
Fn+1 + Fn for n ≥ 0. We can use power series to derive the explicit formula for Fn as follows. Let

f(x) =

∞∑
n=0

Fnx
n.

(1) Use the recurrence relation and the initial conditions for Fn to deduce f(x) =
−x

x2 + x− 1
.

(2) Use partial fraction decomposition to write f(x) as f(x) =
A

x− α
+

B

x− β
for suitable numbers

A,B, α, β.

(3) Use the expression found for f in (2) and the geometric series to deduce

Fn =
1√
5

((1 +√
5

2

)n
−
(1−√

5

2

)n)
by comparing coefficients.

Solution.

(1) f(x) =

∞∑
n=0

Fnx
n = x+

∞∑
n=2

Fnx
n = x+

∞∑
n=2

(Fn−1+Fn−2)x
n = x+

∞∑
n=1

Fnx
n+1+

∞∑
n=0

Fnx
n+2 =

x+ (x+ x2)f(x). Now solve for f(x).

(2) x2 + x − 1 has roots α, β with α =
1 +

√
5

2
, β =

1−
√
5

2
. We then have

−x

x2 + x− 1
=

A

x− α
+

B

x− β
with A =

−α√
5
, B =

α√
5
.

(3)

∞∑
n=0

Fnx
n =

−x

x2 + x− 1
=

A

x− α
+

B

x− β

=
A

−α

1

1− x
α

+
B

−β

1

1− x
β

=
A

−α

∞∑
n=0

(x
α

)n
+

B

−β

∞∑
n=0

(
x

β

)n

=

∞∑
n=0

(
A

−α
α−n +

B

−β
β−n

)
xn.

Now compare coefficients to get Fn =
A

−α
α−n+

B

−β
β−n. Plug in the values of A,B, α, β found

in (2) to get the result (it might be helpful to use the identity αβ = −1).

Problem 7. Use the first order Taylor polynomial and its error bound to show the error bound for the
midpoint rule (Hint: First consider one interval [x0, x1]. Using the Taylor inequality for |f(x)− T1(x)|
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show that

∣∣∣∣∫ x1

x0

f(x)dx−∆xf(x1)

∣∣∣∣ ≤ (∆x)3M

24
where M is a bound for |f ′′|. Then add up all the

error terms for the individual intervals [xi, xi+1] to get the error bound on [a, b]).

Solution. Let the setup be as in the midpoint rule. Let M be such that |f ′′(x)| ≤ M for x ∈ [a, b].
Consider a single interval [xi, xi+1]. Let T1 denote the first order Taylor polynomial with center

xi+1 =
xi + xi+1

2
. We have∫ xi+1

xi

f(x) dx =

∫ xi+1

xi

f(x)− T1(x) + T1(x) dx

=

∫ xi+1

xi

T1(x) dx+

∫ xi+1

xi

f(x)− T1(x) dx

Using T1(x) = f(xi+1) + f ′(xi+1)(x− xi+1) show that

∫ xi+1

xi

T1(x)dx = ∆xf(x1). Then we get∣∣∣∣∫ xi+1

xi

f(x)dx−∆xf(xi+1)

∣∣∣∣ = ∣∣∣∣∫ xi+1

xi

f(x)− T1(x) dx

∣∣∣∣
≤
∫ xi+1

xi

|f(x)− T1(x)|dx

≤
∫ xi+1

xi

M

2!
|x− xi+1|2 dx

=
M

2
· 2(x− xi+1)

3

3

= M
(∆x)3

24
Now add up all the error bounds:∣∣∣∣∣
∫ b

a

f(x) dx−∆x
(
f(x1) + · · ·+ f(xn)

)∣∣∣∣∣ ≤
∣∣∣∣∫ x1

x0

f(x) dx−∆xf(x1)

∣∣∣∣+ · · ·+

∣∣∣∣∣
∫ xn

xn−1

f(x) dx−∆xf(xn)

∣∣∣∣∣
≤ M

(∆x)3

24
+ · · ·+M

(∆x)3

24

= nM
(∆x)3

24

= nM

(
b−a
n

)3
24

=
M(b− a)3

24n2

This is the desired error bound.
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