SERIES WORKSHEET 2 SOLUTION SKETCHES

Note: These are not model solutions, but only sketches/hints towards solutions.

Problem 1. Find the radius of convergence and the interval of convergence (for (6) and (8) just the
radius suffices).
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Solution.

(1) R = V3, 10C = (—v/3,V3). Do ratio or root test for R. At the endpoints the general term
doesn’t go to 0.

(2) R =4,10C = [—4,4]. Do ratio or root test for R. At the endpoints get convergence by p-series
withp=4> 1.

(3) R = 1, I0C = [1,3]. Do ratio or root test for R. At the endpoints get convergence by
comparison with p-series with p =2 > 1.
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(4) R=-,1I0C = (—5, 5) Do ratio or root test for R. At the endpoints the general term doesn’t

go to 0.

(5) R=1, I0C = [2,4]. Do ratio or root test for R. At the endpoints get convergence by p-series
with p=3> 1.
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(6) R =e. Do ratio test. (Extra problem: Use Stirling’s approximation lim ————=1to
n—00 uz
deduce behaviour at endpoints)
(7) R=1,10C = [-1,1). Do ratio or root test for R. At the right endpoint we get the harmonic

series, at the left we get the alternating harmonic series (note that n is even iff n? is).

(8) R =k"*. Do ratio test.
Problem 2. Compute the values of the sums:
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Solution.

(1) e~!. Use the exponential series.
(2) z Differentiate the geometric series.
(3) —In(1 —e™!). Use Taylor series for In(1 — ).
(4) 0. Use Taylor series for sinz.

(5) V2 — 1. Use binomial series using the hint.

(6) e+e

— 1. Consider the Taylor series for e + e~ *. (This is a common trick to get rid of the
odd terms).

Use the Taylor series for arctan x.

(7) %

Problem 3. Express the given functions as power series centered at 0.
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T2 (3) sin®(x), 4) (z+1)e”

Solution.
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1+z 2z
(@ — =1+7— —1+2xnzox _1+nzl2x =142z +22 +22° +.
() sn(o) = § = Jeos2n) = 5 = 3 DA = =3 S0
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4) (z+ l)ew2 =(z+1) Z (xn') = Z T o + % = Z (sz)' (here |z] = largest integer
n=0 ] n=0 9 k=0 ‘L2
that is < z, in particular | i |=n= L?nj)
Problem 4. Suppose f(x Zancc has radius of convergence 1 and Zan converges. Abel’s
n=0 n=0
theorem says that then hm f(z Z an- Use this to compute the following sums:
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Solution.

(1) In2. Use the series for f(x) =In(1+ z).

(2) % Use the series for f(z) = arctanz.

Problem 5. The Bernoulli numbers B,, are defined by the power series expansion
x B, .,
1

Compute B, for n = 0,1,2,3,4,5,6. Show that

whenever n > 1 is odd.

— + g is even and hence deduce that B,, = 0
e —

Solution. Can compute the first terms in the quotient either by long division of power series or by

— B .
writing = (e — 1) Z —'x”, then multiplying out the product on the right, comparing coefficients,
n!
n=0
and finally solving recursively for the B,,. This gives:
] B
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5 0

1
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42

If a function is even, then its MacLaurin series has only terms with even power (e.g. compare coefficients

+ 2

— is even,
e —1 2

hence all its coefficients with an odd z-power are 0. But except for the ' coefficient, they all coincide

in the equation f(z) = f(—=x)). Some algebraic manipulations show that f(z) =

T
with the coefficients of .
et —1

oo
1 2
Remark: On Homework 3 you showed g — = % More generally, one can show
n
n=1

i L B (71)n+1(2ﬂ_)2nB2n
= 2P 2(2n)!

for all integers k > 0.
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Problem 6. Recall that the Fibonacci numbers are defined recursively by Fy =0, F} = 1 and F,, 12 =
Foi1+ F, for n > 0. We can use power series to derive the explicit formula for F,, as follows. Let

= Z F,z".
n=0

(1) Use the recurrence relation and the initial conditions for F,, to deduce f(z) = %
x?+x—

A

for suitable numbers
r—a xT—p

(2) Use partial fraction decomposition to write f(z) as f(x) =
A7 37 a’ /8'

(3) Use the expression found for f in (2) and the geometric series to deduce

re s (5 - (5

by comparing coefficients.

Solution.
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x—l—(m—i—x )f(z). Now solve for f(x).
1++5 1-5 —

(2) x2A+ T — 1Bhas roots a, 8 with a = 5 B = 5 We then have proppe i
- a
4+ —— with A= —=,B=—.
r—a z-pf Vb Vb
(3)
= —x A B
Foa" =
z_: * 24+zr—-1 - a+x—ﬁ
4t B 1
N —al-—%2 —31 %
AT (:v n B i( )
_an:O a) ’Bn*O
[ A B
— Z (a—n + B—n) "
—a -8
n=0
. A
Now compare coefficients to get F,, = —a™ "+ yz ﬁ ". Plug in the values of A, B, «, 8 found
—«

n (2) to get the result (it might be helpful to use the identity af = —1).

Problem 7. Use the first order Taylor polynomial and its error bound to show the error bound for the
midpoint rule (Hint: First consider one interval [zg, z1]. Using the Taylor inequality for |f(z) — T1(z)|
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" fapae - daga| < BN

error terms for the individual intervals [z;, z;+1] to get the error bound on [a, b]).

show that where M is a bound for |f”|. Then add up all the

Solution. Let the setup be as in the midpoint rule. Let M be such that |f”(z)] < M for = € [a,b].
Consider a single interval [x;,2z;+1]. Let T denote the first order Taylor polynomial with center

it Titl o have
S

Tit1 =

L " (z)da = / o F(z) = Ty (z) + Ty (z) dz

Ti41 Ti41
_ / T(2) do + / (@) = Ti(2) da
Ti4+1

Using T1(z) = f(Tiz1) + [ (Tit1)(x — Ti11) show that / Ty (x)de = Az f(Z7). Then we get

T4

[ swar - sese

i

/m @) - Ty(@) da

i

< [iw - n@le

_M (& —zi)
T2 3
_ M(Ax)3
24
Now add up all the error bounds:
b z1 Tn
[ f@yde = sa(p@) -+ 1@)| < | [ f@)de - dap@n)| 4k | [ s do - Aof)
(Ax)? (Ax)?
<M 51 +--+ M 51
B (Ax)?’
=nM—
O
=nM—y
~ M(b—a)?
T 24n?

This is the desired error bound.
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